

Past Papers Standard Grade Chemistry **Marking Scheme**

2007	KU		PS	
Credit	/30	%	/30	%
1	23+	77%	24+	80%
2	18+	60%	17+	57%
See General Paper	<18	<60%	<17	<57%

2007 Standard Grade Chemistry Credit Marking Scheme						
Question	Answer	Chemistry Covered				
1a	A	A – Test for <i>Oxygen</i> : oxygen gas relights a glowing splint. B – Test for <i>Hydrogen</i> : hydrogen burns with a pop				
1b	D	C – Test for Carbon Dioxide – Carbon Dioxide turns lime water milky D – Test for Ammonia Gas: Ammonia gas turns damp pH paper blue/purple				
2a	A	 ✓ A has largest Particle size (lump) ✓ A has lowest concentration (1mol/l) ✓ A has lowest temperature (20°C) 				
2b	B+C Both for 1 mark	BoxTemperatureMetalParticle SizeConcentrationAcidBox B20°Cmagnesiumlump1mol/lhydrochloricBox C30°Cmagnesiumlump1mol/lhydrochloric				
3α	E	Tar for Roads is found in the Residue fraction. Residue is the heaviest fraction found at the bottom of the distillation tower				
3b	A	The smaller the number of carbons in a hydrocarbon, the lower the boiling point.				
4a	F	The polymer poly(butene) is made from the monomer butene C_4H_8				
4b	B+D Both for 1 mark	Alkenes and Cycloalkanes have the general formula C_nH_{2n} . (alkanes are C_nH_{2n+2}) Reaction with hydrogen is an addition reaction across a C=C double bond. Alkenes will reaction with hydrogen while cycloalkanes do not react with hydrogen				
5α	С	Covalent compounds do not conduct as a solid or a liquid (answers A or C) A high melting point means covalent network structure not molecules C low melting/boiling point means molecules are present.				
5b	F	Metals conduct both as solids and liquids (answers E or F) E Substance E is a solid at 25°C and does melt until 181°C is reached F Substance F is a liquid at 25°C as it melts at -39°C				
6a	E	. Both sulphur dioxide SO ₂ and nitrogen dioxide NO ₂ dissolve in rain water to form acid rain.				
6b	С	Acid (H^{+}) and alkali (OH ⁻) neutralise each other to form water (H_2O)				
6c	A,D 1 mark each	$\square A$ – Oxidation is loss of electrons where Sn loses 2e ⁻ to become Sn ²⁺ . $\square D$ – Mg loses electrons (oxidation) to become Mg ²⁺ ion within Mg ²⁺ O ²⁻ .				
7	D,E 1 mark each	 A- Protons are positively charged but neutrons are neutral B- Only electrons have a negative charge C- Electrons have a relative mass of almost zero D- Both protons and neutrons have a relative mass of 1amu. E- Both protons and neutrons are found inside the nucleus. F- Electrons are found outside the nucleus 				
8	C,E 1 mark each	metal oxide + acid salt + water silver (I) oxide + hydrochloric acid silver (I) chloride + water (insoluble)				
9	B,D 1 mark each	 ▲ A- Fe²⁺ ions not formed around electrode A (iron is electrode B) ▲ B- Electrode A must be iron for Fe²⁺ ions to be formed. ▲ C- Electron flow is from B→A as AI is higher up electrochemical series than Fe ▲ D- Iron is higher up electrochemical series so electron flow is from A→B. Iron atoms turn into Fe²⁺ ions which turn ferroxyl indicator blue. ▲ E- Electron flow is from B→A as iron is higher up electrochemical series than lead 				

Question	Answer		Chemistry Covered		
10a	Equal pro	portions	The relative (average) atomic mass is an average. Average of 107 and		
	of each isotope		109 = ⁽¹⁰⁷⁺¹⁰⁹⁾ / ₂ = 108 if isotope masses 107 and 109 are equal.		
	Particle	Number	No. of protons = atomic number = <u>47</u> (½ mark)		
101	proton	47	No. of <i>neutrons</i> = mass number - atomic number = $107 - 47 = \frac{60}{(\frac{1}{2} \text{ mark})}$		
10b	neutron	60	No of electrons in neutral atom - no. of protons = atomic number = 47		
	electron	26	1+ ion has one less electron than proton \therefore no. of electrons = <u>46</u> (1 mark)		
	2AgNO₃ + Cu				
10c(i)	- ↓		$\underline{2}AgNO_3 + Cu \longrightarrow \underline{2}Ag + Cu(NO_3)_2$		
	2Ag + Cu(NO3)2				
10 (11)	Mercury, Gold		Only a metal below silver in the electrochemical series will not displace		
10c(ii)	or Platinum		silver form a solution of one of its compounds.		
11a	Any structure of butanoic acid with formula C3H7COOH		H H H H O $H - C - C - C - C - C - C$ $H H H H H O - H$		
11b(i)	Higher number if carbons the higher the boiling point		As number of carbons increases (methanoic acid $(C_1) \rightarrow$ butanoic acid (C_4) , the boiling point increases (101°C \rightarrow 164°C)		
11b(ii)	175 - 193		AcidMethanoicEthanoicPropanoicButanoicBoiling Point $101^{\circ}C$ $118^{\circ}C$ $141^{\circ}C$ $164^{\circ}C$ Difference $17^{\circ}C$ $23^{\circ}C$ $23^{\circ}C$ $23^{\circ}C$ Pentanoic acid should have boiling point ~23^{\circ}C higher than butanoic acid $\therefore 164^{\circ}C + 23^{\circ}C = 187^{\circ}C$		
12a	Bar Chart showing		1/2 mark - both labels with units 1/2 mark - both scales 1/2 mark - points plotted correctly 1/2 mark - points joined up appropriately		
12b	60 ±1		or correct answer from line graph		
12c	alkali or hydroxide		alkalis are hydroxide compounds and can also be described as a base. NH4 ⁺ + OH ⁻ → NH3 + H2O from ammonium compound from alkali ammonia gas		
13a	Glucose + Fructose		Sucrose is a disaccharide sugar made when a glucose and a fructose join together by condensation polymerisation with H ₂ O removed as they join. glucose + fructose		
13b	Enzyme or Biological catalyst		Enzymes are biological catalysts which catalyse the chemical reactions inside biological organisms		
14a	negat	Cathodic Protection: Metal is protected from corrosion when attachednegativeCathodic Protection: Metal is protected from corrosion when attachedto the negative terminal of a battery. The electrons from the negative terminal are needed to reverse the corrosion reaction.			
14b(i)	Galvan	Galvanising Galvanised iron has a coating of zinc metal			
14b(ii)	Any answer from:		zinc is more reactive than iron zinc is higher up electrochemical/reactivity series zinc provides sacrificial protection zinc provides electrons to iron zinc sacrifices itself		

15a	H CI :	H becomes stable with 2 electrons in outer shell. Cl becomes stable with 8 electrons in outer shell.		
15b	Any answer from:	to form a full/complete/stable electron shell to become stable to achieve same electron arrangement as Noble gas to get 8 outer electrons		
16a(i)	Fermentation or Anaerobic respiration	Fermentation:glucose \rightarrow ethanol + carbon dioxide $C_6H_{12}O_6$ \rightarrow C_2H_5OH + CO_2		
16a(ii)	slows down or stops	Fermentation is performed by enzymes in yeast when there is no air available. At temperatures of 50°C and above, the enzymes are destroyed (denatured) and no longer work.		
16b(i)	Addition or hydration	Addition Reaction: Molecule adds across a C=C double bond Hydration is the addition of water across a C=C double bond		
16b(ii)	isomers	Isomers have same molecular formula but different structural formula		
16b(iii)	distillation	Distillation separates liquids with different boiling points by evaporation of the lower boiling point liquid followed by condensation in a condenser unit.		
17a	zinc sulphide	-ideCompound contains the two named elementsNB metal-ateCompound contains 3 elements (two named elements + oxygen)always comes-iteCompound contains 3 elements (two named elements + oxygen)first in name		
17ь	aluminium chloride	acid + alkali (metal hydroxide) → salt + water hydrochloric acid + aluminium hydroxide → aluminium chloride + water 3HCl + Al(OH) ₃ → AlCl ₃ + 3H ₂ O		
17c	51.3%	$1 \text{ mol } CaF_2 = 40 + 19 + 19 = 78g$ %Ca = $\frac{\text{mass of } Ca}{\text{mass of } CaF_2}$ ×100 = $\frac{40}{78}$ ×100 = 51.3%		
17d	Fe2O3 + CO ↓ Fe + CO2	The reaction in a blast furnace has the reduction of iron ore (Fe_2O_3) by carbon monoxide. Carbon monoxide is made by incomplete combustion of carbon in the blast furnace. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$		
17e	gold or silver or mercury or platinum	Only the least reactive metals will release them metal from the metal ore by heat alone.		
18a	Reshapes/softens on heating	Thermoplastic: material which softens on heating and can be reshaped Thermosetting: material which does not softens on heating		
18b	Condensation	Condensation polymerisation is polymerisation (joining of monomer units together) where water molecules are removed at the joins.		
19a	colourless	CompoundColourConclusionnickel (II) nitrategreenNickel Ni2+ ions are greennickel (II) sulphategreenNitrate + Sulphate ions are colourlesspotassium sulphatecolourlessPotassium and sulphate ions are both colourlesspotassium permanganatepurpleK* ions are colourless Permanganate ions are purple		
19b	Ni ²⁺ (NO₃ ⁻)₂	NO3 ⁻ ions have a valency of 1. Use cross over rule to calculate formula		
19c(i)	yellow	Chromate (CrO4 ⁻) ions move to positive electrode. CrO4 ⁻ must be yellow		
19c(ii)	to complete circuit	The ions in the electrolyte move between electrodes to complete the circuit		
19c(iii)	insoluble	Lithium phosphate is insoluble (p5of data booklet)		
20a	0.2	n o. of mol = volume x concentration = 0.05litres x 4 mol/l = 0.2 mol		
20b(i)	0.1	CaCO ₃ + 2HCl → CaCl ₂ + H ₂ O + CO ₂ 1mol 2mol 0.1mol 0.2mol		
20b(ii)	10g	1mol CaCO ₃ = (1x40) + (1x12) + (3x12) = 40 + 12 + 48 = 100g m ass = n o. of mol × gfm = 0.1mol × 100g mol ⁻¹ = 10g		

